Quantile regression for longitudinal data using the asymmetric Laplace distribution
نویسندگان
چکیده
منابع مشابه
Quantile regression for longitudinal data using the asymmetric Laplace distribution.
In longitudinal studies, measurements of the same individuals are taken repeatedly through time. Often, the primary goal is to characterize the change in response over time and the factors that influence change. Factors can affect not only the location but also more generally the shape of the distribution of the response over time. To make inference about the shape of a population distribution,...
متن کاملLikelihood Based Inference for Quantile Regression Using the Asymmetric Laplace Distribution
To make inferences about the shape of a population distribution, the widely popular mean regression model, for example, is inadequate if the distribution is not approximately Gaussian (or symmetric). Compared to conventional mean regression (MR), quantile regression (QR) can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecifica...
متن کاملQuantile Regression for Longitudinal Data
The penalized least squares interpretation of the classical random effects estimator suggests a possible way forward for quantile regression models with a large number of “fixed effects”. The introduction of a large number of individual fixed effects can significantly inflate the variability of estimates of other covariate effects. Regularization, or shrinkage of these individual effects toward...
متن کاملPosterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood
The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile regression methods with complete or censored data when an asymmetric Laplace likelihood is used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression framework because the usual quantile regression estimator can be derived as the maximum likelihood estimator under ...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biostatistics
سال: 2006
ISSN: 1465-4644,1468-4357
DOI: 10.1093/biostatistics/kxj039